Hands-on Exercise 1: Geospatial Data Wrangling with R AND Choropleth Mapping with R

Overview

In this hands-on exercise, I learn how to import and wrangling geospatial data using appropriate R packages.

I. Geospatial Data Wrangling with R

Getting Started

The code chunk below install and load sf and tidyverse packages into R environment

pacman::p_load(sf, tidyverse)

Importing Geospatial Data

(1) Importing polygon feature data

mpsz <- st_read(dsn = "data/geospatial", 
                  layer = "MP14_SUBZONE_WEB_PL")
Reading layer `MP14_SUBZONE_WEB_PL' from data source 
  `D:\Xu-Siyi\ISSS624\Hands-on_Ex1\data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21

(2) Importing polyline feature data in shapefile form

The code chunk below uses st_read() function of sf package to import CyclingPath shapefile into R as line feature data frame.

cyclingpath = st_read(dsn = "data/geospatial", 
                         layer = "CyclingPath")
Reading layer `CyclingPath' from data source 
  `D:\Xu-Siyi\ISSS624\Hands-on_Ex1\data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 1625 features and 2 fields
Geometry type: LINESTRING
Dimension:     XY
Bounding box:  xmin: 12711.19 ymin: 28711.33 xmax: 42626.09 ymax: 48948.15
Projected CRS: SVY21

(3) Importing GIS data in kml format

The pre-schools-location-kml is in kml format. The code chunk below will be used to import the kml into R. Notice that in the code chunk below, the complete path and the kml file extension were provided.

preschool = st_read("data/geospatial/pre-schools-location-kml.kml")
Reading layer `PRESCHOOLS_LOCATION' from data source 
  `D:\Xu-Siyi\ISSS624\Hands-on_Ex1\data\geospatial\pre-schools-location-kml.kml' 
  using driver `KML'
Simple feature collection with 1359 features and 2 fields
Geometry type: POINT
Dimension:     XYZ
Bounding box:  xmin: 103.6824 ymin: 1.248403 xmax: 103.9897 ymax: 1.462134
z_range:       zmin: 0 zmax: 0
Geodetic CRS:  WGS 84

The message above reveals that preschool is a point feature data frame. There are a total of 1359 features and 2 fields. Different from the previous two simple feature data frame, preschool is in wgs84 coordinates system.

Checking the Content of A Simple Feature Data Frame

In this sub-section, you will learn different ways to retrieve information related to the content of a simple feature data frame.

(1)Working with st_geometry()

The column in the sf data.frame that contains the geometries is a list, of class sfc. We can retrieve the geometry list-column in this case by mpsz$geom or mpsz[[1]], but the more general way uses st_geometry() as shown in the code chunk below.

st_geometry(mpsz)
Geometry set for 323 features 
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
First 5 geometries:
MULTIPOLYGON (((31495.56 30140.01, 31980.96 296...
MULTIPOLYGON (((29092.28 30021.89, 29119.64 300...
MULTIPOLYGON (((29932.33 29879.12, 29947.32 298...
MULTIPOLYGON (((27131.28 30059.73, 27088.33 297...
MULTIPOLYGON (((26451.03 30396.46, 26440.47 303...

(2) Working with glimpse()

Beside the basic feature information, we also would like to learn more about the associated attribute information in the data frame. This is the time you will find glimpse() of dplyr. very handy as shown in the code chunk below.

glimpse(mpsz)
Rows: 323
Columns: 16
$ OBJECTID   <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, …
$ SUBZONE_NO <int> 1, 1, 3, 8, 3, 7, 9, 2, 13, 7, 12, 6, 1, 5, 1, 1, 3, 2, 2, …
$ SUBZONE_N  <chr> "MARINA SOUTH", "PEARL'S HILL", "BOAT QUAY", "HENDERSON HIL…
$ SUBZONE_C  <chr> "MSSZ01", "OTSZ01", "SRSZ03", "BMSZ08", "BMSZ03", "BMSZ07",…
$ CA_IND     <chr> "Y", "Y", "Y", "N", "N", "N", "N", "Y", "N", "N", "N", "N",…
$ PLN_AREA_N <chr> "MARINA SOUTH", "OUTRAM", "SINGAPORE RIVER", "BUKIT MERAH",…
$ PLN_AREA_C <chr> "MS", "OT", "SR", "BM", "BM", "BM", "BM", "SR", "QT", "QT",…
$ REGION_N   <chr> "CENTRAL REGION", "CENTRAL REGION", "CENTRAL REGION", "CENT…
$ REGION_C   <chr> "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR",…
$ INC_CRC    <chr> "5ED7EB253F99252E", "8C7149B9EB32EEFC", "C35FEFF02B13E0E5",…
$ FMEL_UPD_D <date> 2014-12-05, 2014-12-05, 2014-12-05, 2014-12-05, 2014-12-05…
$ X_ADDR     <dbl> 31595.84, 28679.06, 29654.96, 26782.83, 26201.96, 25358.82,…
$ Y_ADDR     <dbl> 29220.19, 29782.05, 29974.66, 29933.77, 30005.70, 29991.38,…
$ SHAPE_Leng <dbl> 5267.381, 3506.107, 1740.926, 3313.625, 2825.594, 4428.913,…
$ SHAPE_Area <dbl> 1630379.27, 559816.25, 160807.50, 595428.89, 387429.44, 103…
$ geometry   <MULTIPOLYGON [m]> MULTIPOLYGON (((31495.56 30..., MULTIPOLYGON (…

(3) Working with head()

Sometimes we would like to reveal complete information of a feature object, this is the job of head() of Base R

head(mpsz, n=5)  
Simple feature collection with 5 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 25867.68 ymin: 28369.47 xmax: 32362.39 ymax: 30435.54
Projected CRS: SVY21
  OBJECTID SUBZONE_NO      SUBZONE_N SUBZONE_C CA_IND      PLN_AREA_N
1        1          1   MARINA SOUTH    MSSZ01      Y    MARINA SOUTH
2        2          1   PEARL'S HILL    OTSZ01      Y          OUTRAM
3        3          3      BOAT QUAY    SRSZ03      Y SINGAPORE RIVER
4        4          8 HENDERSON HILL    BMSZ08      N     BUKIT MERAH
5        5          3        REDHILL    BMSZ03      N     BUKIT MERAH
  PLN_AREA_C       REGION_N REGION_C          INC_CRC FMEL_UPD_D   X_ADDR
1         MS CENTRAL REGION       CR 5ED7EB253F99252E 2014-12-05 31595.84
2         OT CENTRAL REGION       CR 8C7149B9EB32EEFC 2014-12-05 28679.06
3         SR CENTRAL REGION       CR C35FEFF02B13E0E5 2014-12-05 29654.96
4         BM CENTRAL REGION       CR 3775D82C5DDBEFBD 2014-12-05 26782.83
5         BM CENTRAL REGION       CR 85D9ABEF0A40678F 2014-12-05 26201.96
    Y_ADDR SHAPE_Leng SHAPE_Area                       geometry
1 29220.19   5267.381  1630379.3 MULTIPOLYGON (((31495.56 30...
2 29782.05   3506.107   559816.2 MULTIPOLYGON (((29092.28 30...
3 29974.66   1740.926   160807.5 MULTIPOLYGON (((29932.33 29...
4 29933.77   3313.625   595428.9 MULTIPOLYGON (((27131.28 30...
5 30005.70   2825.594   387429.4 MULTIPOLYGON (((26451.03 30...

Plotting the Geospatial Data

In geospatial data science, by looking at the feature information is not enough. We are also interested to visualise the geospatial features. This is the time you will find plot() of R Graphic comes in very handy as shown in the code chunk below.

plot(mpsz)
Warning: plotting the first 9 out of 15 attributes; use max.plot = 15 to plot
all

The default plot of an sf object is a multi-plot of all attributes, up to a reasonable maximum as shown above. We can, however, choose to plot only the geometry by using the code chunk below.

plot(st_geometry(mpsz))

Alternatively, we can also choose the plot the sf object by using a specific attribute as shown in the code chunk below.

plot(mpsz["PLN_AREA_N"])

Working with Projection

Map projection is an important property of a geospatial data. In order to perform geoprocessing using two geospatial data, we need to ensure that both geospatial data are projected using similar coordinate system.

In this section, you will learn how to project a simple feature data frame from one coordinate system to another coordinate system. The technical term of this process is called projection transformation.

(1)Assigning EPSG code to a simple feature data frame

One of the common issue that can happen during importing geospatial data into R is that the coordinate system of the source data was either missing (such as due to missing .proj for ESRI shapefile) or wrongly assigned during the importing process.

This is an example the coordinate system of mpsz simple feature data frame by using st_crs() of sf package as shown in the code chunk below.

st_crs(mpsz)
Coordinate Reference System:
  User input: SVY21 
  wkt:
PROJCRS["SVY21",
    BASEGEOGCRS["SVY21[WGS84]",
        DATUM["World Geodetic System 1984",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]],
            ID["EPSG",6326]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["Degree",0.0174532925199433]]],
    CONVERSION["unnamed",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["Degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["Degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["(E)",east,
            ORDER[1],
            LENGTHUNIT["metre",1,
                ID["EPSG",9001]]],
        AXIS["(N)",north,
            ORDER[2],
            LENGTHUNIT["metre",1,
                ID["EPSG",9001]]]]

Although mpsz data frame is projected in svy21 but when we read until the end of the print, it indicates that the EPSG is 9001. This is a wrong EPSG code because the correct EPSG code for svy21 should be 3414.

In order to assign the correct EPSG code to mpsz data frame, st_set_crs() of sf package is used as shown in the code chunk below.

mpsz3414 <- st_set_crs(mpsz, 3414)
Warning: st_crs<- : replacing crs does not reproject data; use st_transform for
that
st_crs(mpsz3414)
Coordinate Reference System:
  User input: EPSG:3414 
  wkt:
PROJCRS["SVY21 / Singapore TM",
    BASEGEOGCRS["SVY21",
        DATUM["SVY21",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["degree",0.0174532925199433]],
        ID["EPSG",4757]],
    CONVERSION["Singapore Transverse Mercator",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["northing (N)",north,
            ORDER[1],
            LENGTHUNIT["metre",1]],
        AXIS["easting (E)",east,
            ORDER[2],
            LENGTHUNIT["metre",1]],
    USAGE[
        SCOPE["Cadastre, engineering survey, topographic mapping."],
        AREA["Singapore - onshore and offshore."],
        BBOX[1.13,103.59,1.47,104.07]],
    ID["EPSG",3414]]

(2) Transforming the projection of preschool from wgs84 to svy21

preschool3414 <- st_transform(preschool, 
                              crs = 3414)

Importing and Converting An Aspatial Data

(1)Importing the aspatial data

listings <- read_csv("data/aspatial/listings.csv")
Rows: 4252 Columns: 16
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr   (5): name, host_name, neighbourhood_group, neighbourhood, room_type
dbl  (10): id, host_id, latitude, longitude, price, minimum_nights, number_o...
date  (1): last_review

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
list(listings) 
[[1]]
# A tibble: 4,252 × 16
       id name     host_id host_…¹ neigh…² neigh…³ latit…⁴ longi…⁵ room_…⁶ price
    <dbl> <chr>      <dbl> <chr>   <chr>   <chr>     <dbl>   <dbl> <chr>   <dbl>
 1  50646 Pleasan…  227796 Sujatha Centra… Bukit …    1.33    104. Privat…    80
 2  71609 Ensuite…  367042 Belinda East R… Tampin…    1.35    104. Privat…   178
 3  71896 B&B  Ro…  367042 Belinda East R… Tampin…    1.35    104. Privat…    81
 4  71903 Room 2-…  367042 Belinda East R… Tampin…    1.35    104. Privat…    81
 5 275343 Conveni… 1439258 Joyce   Centra… Bukit …    1.29    104. Privat…    52
 6 275344 15 mins… 1439258 Joyce   Centra… Bukit …    1.29    104. Privat…    40
 7 294281 5 mins … 1521514 Elizab… Centra… Newton     1.31    104. Privat…    72
 8 301247 Nice ro… 1552002 Rahul   Centra… Geylang    1.32    104. Privat…    41
 9 324945 20 Mins… 1439258 Joyce   Centra… Bukit …    1.29    104. Privat…    49
10 330089 Accomo@… 1439258 Joyce   Centra… Bukit …    1.29    104. Privat…    49
# … with 4,242 more rows, 6 more variables: minimum_nights <dbl>,
#   number_of_reviews <dbl>, last_review <date>, reviews_per_month <dbl>,
#   calculated_host_listings_count <dbl>, availability_365 <dbl>, and
#   abbreviated variable names ¹​host_name, ²​neighbourhood_group,
#   ³​neighbourhood, ⁴​latitude, ⁵​longitude, ⁶​room_type

(2)Creating a simple feature data frame from an aspatial data frame

listings_sf <- st_as_sf(listings, 
                       coords = c("longitude", "latitude"),
                       crs=4326) %>%
  st_transform(crs = 3414)
glimpse(listings_sf)
Rows: 4,252
Columns: 15
$ id                             <dbl> 50646, 71609, 71896, 71903, 275343, 275…
$ name                           <chr> "Pleasant Room along Bukit Timah", "Ens…
$ host_id                        <dbl> 227796, 367042, 367042, 367042, 1439258…
$ host_name                      <chr> "Sujatha", "Belinda", "Belinda", "Belin…
$ neighbourhood_group            <chr> "Central Region", "East Region", "East …
$ neighbourhood                  <chr> "Bukit Timah", "Tampines", "Tampines", …
$ room_type                      <chr> "Private room", "Private room", "Privat…
$ price                          <dbl> 80, 178, 81, 81, 52, 40, 72, 41, 49, 49…
$ minimum_nights                 <dbl> 90, 90, 90, 90, 14, 14, 90, 8, 14, 14, …
$ number_of_reviews              <dbl> 18, 20, 24, 48, 20, 13, 133, 105, 14, 1…
$ last_review                    <date> 2014-07-08, 2019-12-28, 2014-12-10, 20…
$ reviews_per_month              <dbl> 0.22, 0.28, 0.33, 0.67, 0.20, 0.16, 1.2…
$ calculated_host_listings_count <dbl> 1, 4, 4, 4, 50, 50, 7, 1, 50, 50, 50, 4…
$ availability_365               <dbl> 365, 365, 365, 365, 353, 364, 365, 90, …
$ geometry                       <POINT [m]> POINT (22646.02 35167.9), POINT (…

Geoprocessing with sf package

(1)Buffering

The solution:

Firstly, st_buffer() of sf package is used to compute the 5-meter buffers around cycling paths

buffer_cycling <- st_buffer(cyclingpath, 
                               dist=5, nQuadSegs = 30)
buffer_cycling$AREA <- st_area(buffer_cycling)
sum(buffer_cycling$AREA)
773143.9 [m^2]

(2) Point-in-polygon count

mpsz3414$`PreSch Count`<- lengths(st_intersects(mpsz3414, preschool3414))
summary(mpsz3414$`PreSch Count`)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  0.000   0.000   2.000   4.207   6.000  37.000 
top_n(mpsz3414, 1, `PreSch Count`)
Simple feature collection with 1 feature and 16 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 23449.05 ymin: 46001.23 xmax: 25594.22 ymax: 47996.47
Projected CRS: SVY21 / Singapore TM
  OBJECTID SUBZONE_NO      SUBZONE_N SUBZONE_C CA_IND PLN_AREA_N PLN_AREA_C
1      290          3 WOODLANDS EAST    WDSZ03      N  WOODLANDS         WD
      REGION_N REGION_C          INC_CRC FMEL_UPD_D   X_ADDR   Y_ADDR
1 NORTH REGION       NR C90769E43EE6B0F2 2014-12-05 24506.64 46991.63
  SHAPE_Leng SHAPE_Area                       geometry PreSch Count
1   6603.608    2553464 MULTIPOLYGON (((24786.75 46...           37
mpsz3414$Area <- mpsz3414 %>%
  st_area()
mpsz3414 <- mpsz3414 %>%
  mutate(`PreSch Density` = `PreSch Count`/Area * 1000000)

Explorotary Data Analysis (EDA)

hist(mpsz3414$`PreSch Density`)

ggplot(data=mpsz3414, 
       aes(x= as.numeric(`PreSch Density`)))+
  geom_histogram(bins=20, 
                 color="black", 
                 fill="light blue") +
  labs(title = "Are pre-school even distributed in Singapore?",
       subtitle= "There are many planning sub-zones with a single pre-school, on the other hand, \nthere are two planning sub-zones with at least 20 pre-schools",
      x = "Pre-school density (per km sq)",
      y = "Frequency")

DIY

library(ggplot2)
library(units)
udunits database from C:/R/R-4.2.2/library/units/share/udunits/udunits2.xml
ggplot(mpsz3414, aes(x = `PreSch Count`,y = `PreSch Density`)) + geom_point()+labs(title="The relationship between Pre-school Density and Pre-school Count",
       x="Pre-school count (per km sq)", y = "PreSch Desnity")+
  theme_classic()  

II. Choropleth Mapping with R

Getting Started

pacman::p_load(sf, tmap, tidyverse)

Importing Data into R

Importing Geospatial Data into R

mpsz <- st_read(dsn = "data/geospatial", 
                layer = "MP14_SUBZONE_WEB_PL")
Reading layer `MP14_SUBZONE_WEB_PL' from data source 
  `D:\Xu-Siyi\ISSS624\Hands-on_Ex1\data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
mpsz
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
First 10 features:
   OBJECTID SUBZONE_NO       SUBZONE_N SUBZONE_C CA_IND      PLN_AREA_N
1         1          1    MARINA SOUTH    MSSZ01      Y    MARINA SOUTH
2         2          1    PEARL'S HILL    OTSZ01      Y          OUTRAM
3         3          3       BOAT QUAY    SRSZ03      Y SINGAPORE RIVER
4         4          8  HENDERSON HILL    BMSZ08      N     BUKIT MERAH
5         5          3         REDHILL    BMSZ03      N     BUKIT MERAH
6         6          7  ALEXANDRA HILL    BMSZ07      N     BUKIT MERAH
7         7          9   BUKIT HO SWEE    BMSZ09      N     BUKIT MERAH
8         8          2     CLARKE QUAY    SRSZ02      Y SINGAPORE RIVER
9         9         13 PASIR PANJANG 1    QTSZ13      N      QUEENSTOWN
10       10          7       QUEENSWAY    QTSZ07      N      QUEENSTOWN
   PLN_AREA_C       REGION_N REGION_C          INC_CRC FMEL_UPD_D   X_ADDR
1          MS CENTRAL REGION       CR 5ED7EB253F99252E 2014-12-05 31595.84
2          OT CENTRAL REGION       CR 8C7149B9EB32EEFC 2014-12-05 28679.06
3          SR CENTRAL REGION       CR C35FEFF02B13E0E5 2014-12-05 29654.96
4          BM CENTRAL REGION       CR 3775D82C5DDBEFBD 2014-12-05 26782.83
5          BM CENTRAL REGION       CR 85D9ABEF0A40678F 2014-12-05 26201.96
6          BM CENTRAL REGION       CR 9D286521EF5E3B59 2014-12-05 25358.82
7          BM CENTRAL REGION       CR 7839A8577144EFE2 2014-12-05 27680.06
8          SR CENTRAL REGION       CR 48661DC0FBA09F7A 2014-12-05 29253.21
9          QT CENTRAL REGION       CR 1F721290C421BFAB 2014-12-05 22077.34
10         QT CENTRAL REGION       CR 3580D2AFFBEE914C 2014-12-05 24168.31
     Y_ADDR SHAPE_Leng SHAPE_Area                       geometry
1  29220.19   5267.381  1630379.3 MULTIPOLYGON (((31495.56 30...
2  29782.05   3506.107   559816.2 MULTIPOLYGON (((29092.28 30...
3  29974.66   1740.926   160807.5 MULTIPOLYGON (((29932.33 29...
4  29933.77   3313.625   595428.9 MULTIPOLYGON (((27131.28 30...
5  30005.70   2825.594   387429.4 MULTIPOLYGON (((26451.03 30...
6  29991.38   4428.913  1030378.8 MULTIPOLYGON (((25899.7 297...
7  30230.86   3275.312   551732.0 MULTIPOLYGON (((27746.95 30...
8  30222.86   2208.619   290184.7 MULTIPOLYGON (((29351.26 29...
9  29893.78   6571.323  1084792.3 MULTIPOLYGON (((20996.49 30...
10 30104.18   3454.239   631644.3 MULTIPOLYGON (((24472.11 29...

Importing Attribute Data into R

popdata <- read_csv("data/aspatial/respopagesextod2011to2020.csv")
Rows: 984656 Columns: 7
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (5): PA, SZ, AG, Sex, TOD
dbl (2): Pop, Time

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Data Preparation

  1. Data Wrangling

    popdata2020 <- popdata %>%
      filter(Time == 2020) %>%
      group_by(PA, SZ, AG) %>%
      summarise(`POP` = sum(`Pop`)) %>%
      ungroup()%>%
      pivot_wider(names_from=AG, 
                  values_from=POP) %>%
      mutate(YOUNG = rowSums(.[3:6])
             +rowSums(.[12])) %>%
    mutate(`ECONOMY ACTIVE` = rowSums(.[7:11])+
    rowSums(.[13:15]))%>%
    mutate(`AGED`=rowSums(.[16:21])) %>%
    mutate(`TOTAL`=rowSums(.[3:21])) %>%  
    mutate(`DEPENDENCY` = (`YOUNG` + `AGED`)
    /`ECONOMY ACTIVE`) %>%
      select(`PA`, `SZ`, `YOUNG`, 
           `ECONOMY ACTIVE`, `AGED`, 
           `TOTAL`, `DEPENDENCY`)
    `summarise()` has grouped output by 'PA', 'SZ'. You can override using the
    `.groups` argument.
  2. Joining the attribute data and geospatial data

popdata2020 <- popdata2020 %>%
  mutate_at(.vars = vars(PA, SZ), 
          .funs = funs(toupper)) %>%
  filter(`ECONOMY ACTIVE` > 0)
Warning: `funs()` was deprecated in dplyr 0.8.0.
ℹ Please use a list of either functions or lambdas:

# Simple named list: list(mean = mean, median = median)

# Auto named with `tibble::lst()`: tibble::lst(mean, median)

# Using lambdas list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
mpsz_pop2020 <- left_join(mpsz, popdata2020,
                          by = c("SUBZONE_N" = "SZ"))
write_rds(mpsz_pop2020, "data/rds/mpszpop2020.rds")

Choropleth Mapping Geospatial Data Using tmap

(1) Plotting a choropleth map quickly by using qtm()

tmap_mode("plot")
tmap mode set to plotting
qtm(mpsz_pop2020, 
    fill = "DEPENDENCY")

(2) Creating a choropleth map by using tmap’s elements

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY", 
          style = "quantile", 
          palette = "Blues",
          title = "Dependency ratio") +
  tm_layout(main.title = "Distribution of Dependency Ratio by planning subzone",
            main.title.position = "center",
            main.title.size = 1.2,
            legend.height = 0.45, 
            legend.width = 0.35,
            frame = TRUE) +
  tm_borders(alpha = 0.5) +
  tm_compass(type="8star", size = 2) +
  tm_scale_bar() +
  tm_grid(alpha =0.2) +
  tm_credits("Source: Planning Sub-zone boundary from Urban Redevelopment Authorithy (URA)\n and Population data from Department of Statistics DOS", 
             position = c("left", "bottom"))

1. Drawing a base map

tm_shape(mpsz_pop2020) +
  tm_polygons()

2. Drawing a choropleth map using tm_polygons()

tm_shape(mpsz_pop2020)+
  tm_polygons("DEPENDENCY")

3. Drawing a choropleth map using tm_fill() and *tm_border()**

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY")